

Welcome to Exhibition’s documentation!

Say it right:

/ɛgs’hɪb’ɪʃ(ə)n/

So something like:

eggs hib ish’n

What?

A static site generator

License?

GPLv3 or later. See LICENSE for the actual text.

Why though?

I’ve been using Hyde since forever, but I wasn’t happy with it. I was also very unhappy with other static site generators (SSGs) that used Jinja2 for their templating needs:

	Pelican and the like are too blog focused. It didn’t feel in the spirit of
those projects to have a blog and a recipe list as two separate sections to a
website.

	Hyde is everything I want, except for the complete lack of documentation and
a massive code base that needs a lot of work to make it run on Python 3. It
is also currently unmaintained.

	I should also mention that there are huge parts of Hyde that do nothing for
me, so starting from scratch made more sense than dealing with Hyde.

There are SSGs that aren’t written in Python or don’t use Jinja2 for their
templates, but I’m not interested in rewritting all the templates for the sites
that I have made with Hyde.

What’s the status of this project?

I’m not using it for anything serious yet, but there are tests, and there are some docs.

Contents:

	Getting started
	Minimum setup

	Templates

	Meta

	What next?

	exhibit commandline script
	exhibit

	Exhibition API Guide
	exhibition package

	Changelog
	0.0.3

	0.0.2

	0.0.1

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Exhibition is fairly quick to configure.

Minimum setup

At minimum, Exhibition expects to find a YAML file, site.yaml, with at
least deploy_path and content_path defined. The path specified in
content_path needs to exist.

For example:

$ mkdir content
$ cat << EOF > site.yaml
> deploy_path: deploy
> content_path: content
> EOF

You can now generate your first Exhibition website!:

$ exhibit gen
$ ls deploy

Of course, you’ve got no content so the directory will be empty.

Any file or directory you put in content will appear in deploy when you
run exhibit gen.

Templates

Exhibition supports Jinja2 [http://jinja.pocoo.org/] out of the box, but it
needs to be enabled:

site.yaml

deploy_path: deploy
content_path: content
filter: exhibition.filters.jinja2

Now we can create HTML files that use Jinja2 template syntax:

content/index.html

<html>
 <body>
 <p>This page has {{ node.siblings|length }} siblings</p>
 </body>
</html>

Note

node is the current page being rendered and is passed to Jinja2 as a context variable.

Run exhibit gen and then exhibit serve. If you connect to
http://localhost:8000 you’ll see the following text:

This page has 0 siblings

If you add another page, this number will increase when run exhibit gen again.

If you wish to use template inheritance, add the following to site.yaml:

templates: mytemplates

Where “mytemplates” is whatever directory you will store your templates in. You
can either use the extends tag directly or you can specify extends in
site.yaml. You can also specify default-block to save you from wrapping
every page in {% block content %}:

extends: page.j2
default-block: content

And then our template:

mytemplates/page.j2

<html>
 <body>
 {% block content %}{% endblock %}
 </body>
</html>

Our index page would be this:

content/index.html

<p>This page has {{ node.siblings|length }} siblings</p>

The generated HTML will be exactly the same, except now files in content/
will not have to each have their own copy of any headings, page title, links to
CSS or whatever.

Meta

Site settings are available in templates as node.meta. For example:

content/otherpage.html

<p>Current filter is "{{ node.meta.filter }}"</p>

Which will generate the following:

Current filter is "exhibition.filters.jinja2"

You can reference any data that you put in site.yaml like this - and
there’s no limit on what you can put in there.

As well as site.yaml there are two additional places that settings can be
controlled: meta.yaml and front matter.

Meta files

A meta.yaml can be used to define or override settings for a particular
directory and any files or subdirectories it contains.

Let’s add a blog to our website:

$ mkdir content/blog
$ cat << EOF > content/blog/meta.yaml
> extends: blog_post.j2

Now all HTML files in content/blog/ will use the blog_post.j2 as their
base template rather than page.j2, but files such as content/index.html
will still use page.j2 as their base template.

Note

meta.yaml files do not appear as nodes and won’t appear in deploy_path

Front matter

Front matter is the term used to describe YAML metadata put at the beginning of
a file. Unlike meta.yaml, any settings defined (or overridden) here will
only affect this one file.

For example, we won’t want the index page of our blog to use blog_post.j2
as its base template:

content/blog/index.html

extends: blog_index.j2

{% for post in node.sibling %}
 <p>{{ post.meta.title }}</p>

content/blog/first-post.html

title: My First Post

<h1>{{ node.meta.title }}
<p>Hey! This is my first blog post!</p>

What next?

Checkout the API. File bugs. Submit patches.

Exhibition is still in the early stages of development, so please contribute!

exhibit commandline script

exhibit

exhibit [OPTIONS] COMMAND [ARGS]...

Options

	
-v, --verbose

	Verbose output, can be used multiple times to increase logging level

gen

Generate site from content_path

exhibit gen [OPTIONS]

serve

Serve files from deploy_path as a webserver would

exhibit serve [OPTIONS]

exhibition

	exhibition package
	Subpackages
	exhibition.filters package
	Submodules

	Submodules
	exhibition.command module

	exhibition.main module

exhibition package

Subpackages

	exhibition.filters package
	Submodules
	exhibition.filters.jinja2 module

Submodules

	exhibition.command module

	exhibition.main module

exhibition.filters package

Submodules

	exhibition.filters.jinja2 module

exhibition.filters.jinja2 module

Jinja2 template filter

To use, add the following to your configuration file:

filter: exhibition.filters.jinja2

	
class exhibition.filters.jinja2.Mark(environment)

	Bases: jinja2.ext.Extension

Marks a section for use later:

{% mark intro %}
<p>My Intro</p>
{% endmark %}

<p>Some more text</p>

This can then be referenced via Node.marks.

	
identifier = 'exhibition.filters.jinja2.Mark'

	

	
parse(parser)

	If any of the tags matched this method is called with the
parser as first argument. The token the parser stream is pointing at
is the name token that matched. This method has to return one or a
list of multiple nodes.

	
tags = {'mark'}

	

	
class exhibition.filters.jinja2.RaiseError(environment)

	Bases: jinja2.ext.Extension

Raise an exception during template rendering:

{% raise "This is an error" %}

	
identifier = 'exhibition.filters.jinja2.RaiseError'

	

	
parse(parser)

	If any of the tags matched this method is called with the
parser as first argument. The token the parser stream is pointing at
is the name token that matched. This method has to return one or a
list of multiple nodes.

	
tags = {'raise'}

	

	
exhibition.filters.jinja2.content_filter(node, content)

	This is the actual content filter called by exhibition.main.Node
on appropiate nodes.

	Parameters

	
	node – The node being rendered

	content – The content of the node, stripped of any YAML front matter

	
exhibition.filters.jinja2.markdown(ctx, text)

	

	
exhibition.filters.jinja2.metareject(nodes, key)

	

	
exhibition.filters.jinja2.metaselect(nodes, key)

	

	
exhibition.filters.jinja2.metasort(nodes, key=None, reverse=False)

	Sorts a list of nodes based on keys found in their meta objects

exhibition.command module

Documentation for this module can be found in exhibit commandline script

exhibition.main module

	
class exhibition.main.Config(data=None, parent=None)

	Bases: object

Configuration object that implements a dict-like interface

If a key cannot be found in this instance, the parent Config will
be searched (and its parent, etc.)

	Parameters

	
	data – Can be one of a string, a file-like object, a dict-like object, or
None. The first two will be assumed as YAML

	parent – Parent Config or None if this is the root configuration object

	
copy()

	

	
classmethod from_path(path)

	Load YAML data from a file

	
get(key, default=None)

	

	
items()

	

	
keys()

	

	
load(data)

	Load data into configutation object

	Parameters

	data – If a string or file-like object, data is parsed as if it were
YAML data. If a dict-like object, data is added to the internal
dictionary.

Otherwise an AssertionError exception is raised

	
update(*args, **kwargs)

	

	
values()

	

	
class exhibition.main.Node(path, parent, meta=None)

	Bases: object

A node represents a file or directory

	Parameters

	
	path – A pathlib.Path that is either the content_path or a child of it.

	parent – Either another Node or None

	meta – A dict-like object that will be passed to a Config instance

	
add_child(child)

	Add a child to the current Node

If the child doesn’t already have its parent set to this Node,
then an AssertionError is raised.

	
data

	Extracts data from contents of file

For example, a YAML file

	
classmethod from_path(path, parent=None, meta=None)

	Given a pathlib.Path, create a Node from that path as well as
any children

If the path is not a file or a dir, an AssertionError is raised

	Parameters

	
	path – A pathlib.Path that is either the content_path or a child of it.

	parent – Either another Node or None

	meta – A dict-like object that will be passed to a Config instance

	
full_path

	Full path of node when deployed

	
full_url

	Get full URL for node, including trailing slash

	
get_content()

	Get the actual content of the Node

First calls process_meta() to find the end any front matter that
might be present and then returns the rest of the file

If filter has been specified in meta, that filter will be
used to further process the content.

	
marks

	Marked sections from content

Calls get_content() to process content if that hasn’t been done
already

	
meta

	Configuration object

Automatically loads front-matter if applicable

	
process_meta()

	Finds and processes the YAML fonrt matter at the top of a file

If the file does not start with ---\n, then it’s assumed the file
does not contain any meta YAML for us to process

	
render()

	Process node and either create the directory or write contents of file to deploy_path

	
siblings

	Returns all children of the parent Node, except for itself

	
walk(include_self=False)

	Walk through Node tree

	
exhibition.main.gen(settings)

	Generate site

Deletes deploy_path first.

	
exhibition.main.serve(settings)

	Serves the generated site from deploy_path

Respects settings like base_url if present.

Changelog

0.0.3

	Fix bug where extension stripping was not being applied

0.0.2

	Fixed trove classifiers

	Add __version__ to exhibition.__init__

0.0.1

Everything is new! Some choice features:

	Configuration via YAML files and YAML front matter

	Jinja2 template engine is provided by default

	A local HTTP server for development work

	Less than 2000 lines of code, including tests

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 exhibition	

 	
 	
 exhibition.command	

 	
 	
 exhibition.filters	

 	
 	
 exhibition.filters.jinja2	

 	
 	
 exhibition.main	

Index

 Symbols
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 -v, --verbose

 	exhibit command line option

A

 	
 	add_child() (exhibition.main.Node method)

C

 	
 	Config (class in exhibition.main)

 	
 	content_filter() (in module exhibition.filters.jinja2)

 	copy() (exhibition.main.Config method)

D

 	
 	data (exhibition.main.Node attribute)

E

 	
 	
 exhibit command line option

 	-v, --verbose

 	exhibition (module)

 	
 	exhibition.command (module)

 	exhibition.filters (module)

 	exhibition.filters.jinja2 (module)

 	exhibition.main (module)

F

 	
 	from_path() (exhibition.main.Config class method)

 	(exhibition.main.Node class method)

 	
 	full_path (exhibition.main.Node attribute)

 	full_url (exhibition.main.Node attribute)

G

 	
 	gen() (in module exhibition.main)

 	
 	get() (exhibition.main.Config method)

 	get_content() (exhibition.main.Node method)

I

 	
 	identifier (exhibition.filters.jinja2.Mark attribute)

 	(exhibition.filters.jinja2.RaiseError attribute)

 	
 	items() (exhibition.main.Config method)

K

 	
 	keys() (exhibition.main.Config method)

L

 	
 	load() (exhibition.main.Config method)

M

 	
 	Mark (class in exhibition.filters.jinja2)

 	markdown() (in module exhibition.filters.jinja2)

 	marks (exhibition.main.Node attribute)

 	
 	meta (exhibition.main.Node attribute)

 	metareject() (in module exhibition.filters.jinja2)

 	metaselect() (in module exhibition.filters.jinja2)

 	metasort() (in module exhibition.filters.jinja2)

N

 	
 	Node (class in exhibition.main)

P

 	
 	parse() (exhibition.filters.jinja2.Mark method)

 	(exhibition.filters.jinja2.RaiseError method)

 	
 	process_meta() (exhibition.main.Node method)

R

 	
 	RaiseError (class in exhibition.filters.jinja2)

 	
 	render() (exhibition.main.Node method)

S

 	
 	serve() (in module exhibition.main)

 	
 	siblings (exhibition.main.Node attribute)

T

 	
 	tags (exhibition.filters.jinja2.Mark attribute)

 	(exhibition.filters.jinja2.RaiseError attribute)

U

 	
 	update() (exhibition.main.Config method)

V

 	
 	values() (exhibition.main.Config method)

W

 	
 	walk() (exhibition.main.Node method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Exhibition’s documentation!

 		
 Getting started

 		
 Minimum setup

 		
 Templates

 		
 Meta

 		
 Meta files

 		
 Front matter

 		
 What next?

 		
 exhibit commandline script

 		
 exhibit

 		
 gen

 		
 serve

 		
 Exhibition API Guide

 		
 exhibition package

 		
 Subpackages

 		
 Submodules

 		
 Changelog

 		
 0.0.3

 		
 0.0.2

 		
 0.0.1

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

