
Exhibition Documentation
Release 0.1.0

Matt Molyneaux

Jan 02, 2019

Contents:

1 What? 3

2 Where? 5

3 License? 7

4 Why though? 9

5 What’s the status of this project? 11
5.1 Contributions . 11

6 Indices and tables 27

Python Module Index 29

i

ii

Exhibition Documentation, Release 0.1.0

Say it right:

/gs’hb’()n/

So something like:

eggs hib ish’n

Contents: 1

https://github.com/moggers87/exhibition

Exhibition Documentation, Release 0.1.0

2 Contents:

CHAPTER 1

What?

A static site generator

3

Exhibition Documentation, Release 0.1.0

4 Chapter 1. What?

CHAPTER 2

Where?

• Download: https://pypi.org/project/exhibition/

• Source: https://github.com/moggers87/exhibition

• Docs: https://exhibition-ssg.readthedocs.io/en/latest/

5

https://pypi.org/project/exhibition/
https://github.com/moggers87/exhibition
https://exhibition-ssg.readthedocs.io/en/latest/

Exhibition Documentation, Release 0.1.0

6 Chapter 2. Where?

CHAPTER 3

License?

GPLv3 or later. See LICENSE for the actual text.

7

Exhibition Documentation, Release 0.1.0

8 Chapter 3. License?

CHAPTER 4

Why though?

I’ve been using Hyde since forever, but I wasn’t happy with it. I was also very unhappy with other static site generators
(SSGs) that used Jinja2 for their templating needs:

• Pelican and the like are too blog focused. It didn’t feel in the spirit of those projects to have anything other than
a blog and a few plain pages. I wanted something more freeoform to work with various projects.

• Hyde is everything I want, except for the complete lack of documentation and a massive code base that needs a
lot of work to make it run on Python 3. It is also currently unmaintained.

– I should also mention that there are huge parts of Hyde that do not use, so starting from scratch made more
sense than upgrading what would be (to me) legacy code.

There are SSGs that aren’t written in Python or don’t use Jinja2 for their templates, but I’m not interested in rewriting
all the templates for the sites that I have made with Hyde.

9

Exhibition Documentation, Release 0.1.0

10 Chapter 4. Why though?

CHAPTER 5

What’s the status of this project?

There are tests, there’s some documentation, and I currently use it for a number of websites, including my personal
blog.

Please feel free to add your site to the wiki if it uses Exhibition, but please make sure its safe for work and not covered
in adverts.

5.1 Contributions

I’m always looking for contributions, whether they be bug reports, bug fixes, feature requests, new features, or doc-
umentation. Also, feel free to open issues for support requests too - these are very helpful in showing me where
documentation is required or needs improving.

There are however some items I won’t consider for inclusion:

• Functionality to upload the static site once generated. This is and shall remain out of scope for this project.

• Windows support. I’ve tried maintaining packages before that have Windows support. I usually end up breaking
it as I have no way to test out my changes on a regular basis.

• Python 2 support.

5.1.1 Getting started

Exhibition is fairly quick to configure.

Minimum setup

At minimum, Exhibition expects to find a YAML file, site.yaml, with at least deploy_path and
content_path defined. The path specified in content_path needs to exist.

For example:

11

https://github.com/moggers87/exhibition/wiki

Exhibition Documentation, Release 0.1.0

$ mkdir content
$ cat << EOF > site.yaml
> deploy_path: deploy
> content_path: content
> EOF

You can now generate your first Exhibition website!:

$ exhibit gen
$ ls deploy

Of course, you’ve got no content so the directory will be empty.

Any file or directory you put in content will appear in deploy when you run exhibit gen.

Templates

Exhibition supports Jinja2 out of the box, but it needs to be enabled:

Listing 1: site.yaml

deploy_path: deploy
content_path: content
filter: exhibition.filters.jinja2

Now we can create HTML files that use Jinja2 template syntax:

Listing 2: content/index.html

<html>
<body>
<p>This page has {{ node.siblings|length }} siblings</p>

</body>
</html>

Note: node is the current page being rendered and is passed to Jinja2 as a context variable.

Run exhibit gen and then exhibit serve. If you connect to http://localhost:8000 you’ll see the
following text:

This page has 0 siblings

If you add another page, this number will increase when run exhibit gen again.

If you wish to use template inheritance, add the following to site.yaml:

templates: mytemplates

Where “mytemplates” is whatever directory you will store your templates in. You can either use the extends tag
directly or you can specify extends in site.yaml. You can also specify default_block to save you from
wrapping every page in {% block content %}:

extends: page.j2
default_block: content

12 Chapter 5. What’s the status of this project?

http://jinja.pocoo.org/

Exhibition Documentation, Release 0.1.0

And then our template:

Listing 3: mytemplates/page.j2

<html>
<body>
{% block content %}{% endblock %}

</body>
</html>

Our index page would be this:

Listing 4: content/index.html

<p>This page has {{ node.siblings|length }} siblings</p>

The generated HTML will be exactly the same, except now files in content/ will not have to each have their own
copy of any headings, page title, links to CSS or whatever.

Meta

Site settings are available in templates as node.meta. For example:

Listing 5: content/otherpage.html

<p>Current filter is "{{ node.meta.filter }}"</p>

Which will generate the following:

Current filter is "exhibition.filters.jinja2"

You can reference any data that you put in site.yaml like this - and there’s no limit on what you can put in there.

As well as site.yaml there are two additional places that settings can be controlled: meta.yaml and frontmatter.

Meta files

A meta.yaml can be used to define or override settings for a particular directory and any files or subdirectories it
contains.

Let’s add a blog to our website:

$ mkdir content/blog
$ cat << EOF > content/blog/meta.yaml
> extends: blog_post.j2

Now all HTML files in content/blog/will use the blog_post.j2 as their base template rather than page.j2,
but files such as content/index.html will still use page.j2 as their base template.

Note: meta.yaml files do not appear as nodes and won’t appear in deploy_path

5.1. Contributions 13

Exhibition Documentation, Release 0.1.0

Frontmatter

Frontmatter is the term used to describe YAML metadata put at the beginning of a file. Unlike meta.yaml, any
settings defined (or overridden) here will only affect this one file.

For example, we won’t want the index page of our blog to use blog_post.j2 as its base template:

Listing 6: content/blog/index.html

extends: blog_index.j2

{% for post in node.sibling %}

<p>{{ post.meta.title }}</p>

Listing 7: content/blog/first-post.html

title: My First Post

<h1>{{ node.meta.title }}
<p>Hey! This is my first blog post!</p>

What next?

Checkout the API. File bugs. Submit patches.

Exhibition is still in the early stages of development, so please contribute!

5.1.2 exhibit commandline script

exhibit

exhibit [OPTIONS] COMMAND [ARGS]...

Options

-v, --verbose
Verbose output, can be used multiple times to increase logging level

gen

Generate site from content_path

exhibit gen [OPTIONS]

serve

Serve files from deploy_path as a webserver would

14 Chapter 5. What’s the status of this project?

Exhibition Documentation, Release 0.1.0

exhibit serve [OPTIONS]

5.1.3 Configuration

Exhibition draws configuration options from three places:

• site.yaml, which is the root configuration file

• meta.yaml, which there can be one or none in any given folder

• “Frontmatter”, which is a YAML header that can be put in any text file. It must be the first thing in the file and
it must start and end with --- - both on their own lines.

The difference between these different places to put configuration is explain in detail in the Getting started page.

Inheritance

One important aspect of Exhibition’s configuration system is that for a given node (a file or a folder), a key is search
for in the following way:

1. The current node is checked for the specified key. If it’s found, it is returned. Otherwise carry on to 2.

2. The parent of the current node is checked, and if the specified key is not found here then its parent is checked
the same way (and so on), until the root node is found.

3. If the root node does not have the specified key, then site.yaml is searched.

4. Only once site.yaml has been searched is a KeyError raised if the key cannot be found.

Mandatory

The following options must be present in site.yaml:

content_path

This is the path to where Exhibition will load data from. It should have the same directory structure and files as you
want to appear in the rendered site.

deploy_path

Once rendered, pages will be placed here.

Warning: content_path and deploy_path should only appear in site.yaml.

General

ignore

Matching files are not processed by Exhibition at all. Can be a file name or a glob pattern:

5.1. Contributions 15

Exhibition Documentation, Release 0.1.0

ignore: "*.py"

As glob patterns are fairly simple, ignore can also be a list of patterns:

ignore:
- "*.py"
- example.xcf

base_url

If your site isn’t deployed to the root of a domain, use this setting to tell Exhibition about the prefix so it can be added
to all URLs

strip_exts

Specifies if certain files should have their extensions removed when being referenced via Node.full_url. When
deploying, this does not change the filename, so you will need to configure your web server to serve those files
correctly.

By default, this will be applied to files ending in .html, to disable this feature use the following:

strip_exts:

You can also specify multiple file extensions:

strip_exts:
- .html
- .htm

index_file

Specify the name file name of the “index” file for a directory. By default this is index.html, as it is on most web
servers. If you change this settings, be sure to update your web server’s configuration to reflect this change.

Filters

filter

The dotted path notation that Exhibition can import to process content on a node.

Exhibition comes with one filter: exhibition.filters.jinja2

filter_glob

Matching files are processed by filter if specified, otherwise this option does nothing.

filter_glob: "*.html"

As glob patterns are fairly simple, filter_glob can also be a list of patterns:

16 Chapter 5. What’s the status of this project?

Exhibition Documentation, Release 0.1.0

filter_glob:
- "*.html"
- "*.htm"
- "robot.txt"

Filters specify their own default glob, refer to the documentation of that filter to find out what that is.

Jinja2

templates

The path where Jinja2 templates will be found. Can be single string or a list.

extends

If specified, this will insert a {% extends %} statement at the beginning of the file content before it is passed to
Jinja2.

default_block

If specified, this will wrap the file content in {% block %}.

markdown_config

Markdown options as specified in the Markdown documentation.

External Command

external_cmd

The command to run. This should use the placeholders {INPUT} and {OUTPUT} for the input and output files
respectively. For example:

external_cmd: "cat {INPUT} | sort > {OUTPUT}"

Cache busting

Cache busting is an important tool that allows static assets (such as CSS files) to bypass the browser cache when the
content of such files is updated, while still allowing high value expiry times.

cache_bust_glob

Matching files have their deployed path and URL changed to include a hash of their contents. E.g. media/site.
css might become media/site.894a4cd1.css. You can specify globs in the usual manner:

5.1. Contributions 17

https://python-markdown.github.io/reference/#markdown

Exhibition Documentation, Release 0.1.0

cache_bust_glob: "*.css"

As glob patterns are fairly simple, cache_bust_glob can also be a list of patterns:

cache_bust_glob:
- "*.css"
- "*.jpg"
- "*.jpeg"

To refer to cache busted nodes in your Jinja2 templates, do the following:

<link rel="stylesheet" href="{{ node.get_from_path("/media/css/site.css").full_url }}
→˓" type="text/css">

5.1.4 Filters

Exhibition comes with a number of filters. You can also write your own!

Jinja2

exhibition.filters.jinja2 will process the contents of a node via the Jinja2 templating engine. Check the
Jinja2 documentation for syntax and a basic understanding of how Jinja2 works.

Unless it is set, filter_glob will default to *.html

Context variables

node The current node

time_now A datetime object that contains the current time in UTC.

Meta

There are some meta options that are used exclusively by Jinja2:

templates Where to search for templates.

extends Automatically add an {% extends %} tag to the start of the content of every affected node.

default_block Wrap the content of affected nodes with the specificity {% block %} tag.

Markdown

markdown is provided as a filter and it can be configured via the markdown_config meta variable, which is
passed to the markdown function as keyword arguments.

Please view the Markdown documentation for details.

Typogrify

All Typogrify filters are available. See the Typogrify webste for more details.

18 Chapter 5. What’s the status of this project?

http://jinja.pocoo.org/
https://python-markdown.github.io/
https://github.com/mintchaos/typogrify

Exhibition Documentation, Release 0.1.0

Exhibition specific filters

metasort

Given a list of nodes, metasort will sort the list like this:

{{ node.children.values()|metasort("somekey") }}

Where somekey is a key found in each node’s meta.

You can also reverse the order like so:

{{ node.children.values()|metasort("somekey", True) }}

metaselect and metareject

Given a list of nodes, metaselect will filter out nodes that either do not have that key in their meta or do but the
value resolves to something falsey. For example, the following will filter out any nodes that have listable set to
False:

{{ node.children.values()|metaselect("listable") }}

metareject works the same way, except it filters out nodes that don’t have falsey values for the given key.

Marked sections

Marked sections are a great way to allow parts of your content to be referenced elsewhere, for example the preamble
to a blog post:

title: My Post

{% mark intro %}
Blah blah blah...
{% endmark %}

Some more text

In another node you might want to list all the blog posts with their intros:

{% for child in node.children.values() %}
<h3>{{ node.meta.title }}</h3>
<p>{{ node.marks.intro }}</p>

{% endfor %}

You can have as many marks as you like in a node and they can be nested.

Raising Errors

Sometimes it can be useful to raise an error, especially if the logic in your template is quite complex!

5.1. Contributions 19

Exhibition Documentation, Release 0.1.0

{% if 2 == 3 %}
{% raise "This shouldn't be true! The Universe is broken!" %}

{% endif %}

External Command

The external command filter only has one option: external_cmd, which is the shell command to be run. The
specified command should use {INPUT} as the input file and {OUTPUT} as the output file, for example:

external_cmd: "cat {INPUT} | base64 > {OUTPUT}"

Unless it is set, filter_glob will default to *.* for this filter.

Make Your Own

To create your own filter for Exhibition, your module must implement a function with the following signature:

def content_filter(node, content):
return ""

node is the current node being processed.

content is the content of that node, with any frontmatter removed.

content_filter should return a string, which will then become the rendered form of this node.

5.1.5 exhibition

exhibition package

Subpackages

exhibition.filters package

Submodules

exhibition.filters.external module

External command filter

Use an external command to process a file, like so:

filter: exhibition.filters.external
external_cmd: sed 's/this/that/g' {INPUT} > {OUTPUT}

exhibition.filters.external.content_filter(node, content)
This is the actual content filter called by exhibition.main.Node on appropiate nodes.

Parameters

• node – The node being rendered

• content – The content of the node, stripped of any YAML frontmatter

20 Chapter 5. What’s the status of this project?

Exhibition Documentation, Release 0.1.0

exhibition.filters.jinja2 module

Jinja2 template filter

To use, add the following to your configuration file:

filter: exhibition.filters.jinja2

class exhibition.filters.jinja2.Mark(environment)
Bases: jinja2.ext.Extension

Marks a section for use later:

{% mark intro %}
<p>My Intro</p>
{% endmark %}

<p>Some more text</p>

This can then be referenced via Node.marks.

identifier = 'exhibition.filters.jinja2.Mark'

parse(parser)
If any of the tags matched this method is called with the parser as first argument. The token the parser
stream is pointing at is the name token that matched. This method has to return one or a list of multiple
nodes.

tags = {'mark'}

class exhibition.filters.jinja2.RaiseError(environment)
Bases: jinja2.ext.Extension

Raise an exception during template rendering:

{% raise "This is an error" %}

identifier = 'exhibition.filters.jinja2.RaiseError'

parse(parser)
If any of the tags matched this method is called with the parser as first argument. The token the parser
stream is pointing at is the name token that matched. This method has to return one or a list of multiple
nodes.

tags = {'raise'}

exhibition.filters.jinja2.content_filter(node, content)
This is the actual content filter called by exhibition.main.Node on appropiate nodes.

Parameters

• node – The node being rendered

• content – The content of the node, stripped of any YAML frontmatter

exhibition.filters.jinja2.markdown(ctx, text)

exhibition.filters.jinja2.metareject(nodes, key)

exhibition.filters.jinja2.metaselect(nodes, key)

exhibition.filters.jinja2.metasort(nodes, key=None, reverse=False)
Sorts a list of nodes based on keys found in their meta objects

5.1. Contributions 21

Exhibition Documentation, Release 0.1.0

Module contents

Submodules

exhibition.command module

Documentation for this module can be found in exhibit commandline script

exhibition.config module

class exhibition.config.Config(data=None, parent=None, node=None)
Bases: object

Configuration object that implements a dict-like interface

If a key cannot be found in this instance, the parent Config will be searched (and its parent, etc.)

Parameters

• data – Can be one of a string, a file-like object, a dict-like object, or None. The first two
will be assumed as YAML

• parent – Parent Config or None if this is the root configuration object

• node – The node that this object to bound to, or None if it is the root configuration object

copy()

classmethod from_path(path)
Load YAML data from a file

get(key, default=None)

get_name()

items()

keys()

load(data)
Load data into configutation object

Parameters data – If a string or file-like object, data is parsed as if it were YAML data. If a
dict-like object, data is added to the internal dictionary.

Otherwise an AssertionError exception is raised

update(*args, **kwargs)

values()

exhibition.node module

class exhibition.node.Node(path, parent, meta=None)
Bases: object

A node represents a file or directory

Parameters

• path – A pathlib.Path that is either the content_path or a child of it.

22 Chapter 5. What’s the status of this project?

Exhibition Documentation, Release 0.1.0

• parent – Either another Node or None

• meta – A dict-like object that will be passed to a Config instance

add_child(child)
Add a child to the current Node

If the child doesn’t already have its parent set to this Node, then an AssertionError is raised.

cache_bust

data
Extracts data from contents of file

For example, a YAML file

classmethod from_path(path, parent=None, meta=None)
Given a pathlib.Path, create a Node from that path as well as any children. Children are loaded in
Unicode codepoint order - this order is preserved in Node.children if you’re unsure what that means.

If the path is not a file or a dir, an AssertionError is raised

Parameters

• path – A pathlib.Path that is either the content_path or a child of it.

• parent – Either another Node or None

• meta – A dict-like object that will be passed to a Config instance

full_path
Full path of node when deployed

full_url
Get full URL for node, including trailing slash

get_content()
Get the actual content of the Node

First calls process_meta() to find the end any frontmatter that might be present and then returns the
rest of the file

If filter has been specified in meta, that filter will be used to further process the content.

get_from_path(path)
Given a relative or absolute path, return the Node that represents that path.

Parameters path – A str or pathlib.Path

index_file

marks
Marked sections from content

Calls get_content() to process content if that hasn’t been done already

meta
Configuration object

Automatically loads frontmatter if applicable

process_meta()
Finds and processes the YAML fonrt matter at the top of a file

If the file does not start with ---\n, then it’s assumed the file does not contain any meta YAML for us to
process

5.1. Contributions 23

Exhibition Documentation, Release 0.1.0

render()
Process node and either create the directory or write contents of file to deploy_path

siblings
Returns all children of the parent Node, except for itself

strip_exts

walk(include_self=False)
Walk through Node tree

exhibition.utils module

class exhibition.utils.ExhibitionBaseHTTPRequestHandler(request, client_address,
server)

Bases: http.server.SimpleHTTPRequestHandler

translate_path(path)
Translate a /-separated PATH to the local filename syntax.

Components that mean special things to the local file system (e.g. drive or directory names) are ignored.
(XXX They should probably be diagnosed.)

exhibition.utils.gen(settings)
Generate site

Deletes deploy_path first.

exhibition.utils.serve(settings)
Serves the generated site from deploy_path

Respects settings like base_url if present.

Module contents

5.1.6 Changelog

0.1.0

The “I’d almost recommand it to my friends” release.

Added

• Added Python 3.7 support.

• Add the external command filter.

• Document Jinja2 filter.

• Add strip_exts as an user configurable setting.

• Add index_file as an user configurable setting.

Removed

• Removed Python 3.4 support.

24 Chapter 5. What’s the status of this project?

Exhibition Documentation, Release 0.1.0

Fixed

• Reorganised package so that code is easier to manage.

• Make node loading deterministic, meta files loaded first and then alphabetical order for the rest.

0.0.4

• Added vesrioneer.

• Fix bug where exhibit serve was not serving files with extension stripping enabled.

• A KeyError raised by Config now display the path of the node they are attached to, making debuging
missing keys far easier.

• Improved test coverage and fixed numerous bugs.

• Implemented cache busting for static assets (images, CSS, and such). Use the cache_bust_glob option to
control which files are cache busted.

• Implemented Node.get_from_path which can fetch a exhibition.main.Node specified by a path.

• Make all Exhibition defined meta keys use underscores not hyphens.

0.0.3

• Fix bug where extension stripping was not being applied.

0.0.2

• Fixed trove classifiers.

• Add __version__ to exhibition.__init__.

0.0.1

Everything is new! Some choice features:

• Configuration via YAML files and YAML front matter.

• Jinja2 template engine is provided by default.

• A local HTTP server for development work.

• Less than 2000 lines of code, including tests.

5.1. Contributions 25

Exhibition Documentation, Release 0.1.0

26 Chapter 5. What’s the status of this project?

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

Exhibition Documentation, Release 0.1.0

28 Chapter 6. Indices and tables

Python Module Index

e
exhibition, 24
exhibition.command, 22
exhibition.config, 22
exhibition.filters, 22
exhibition.filters.external, 20
exhibition.filters.jinja2, 21
exhibition.node, 22
exhibition.utils, 24

29

Exhibition Documentation, Release 0.1.0

30 Python Module Index

Index

Symbols
-v, -verbose

exhibit command line option, 14

A
add_child() (exhibition.node.Node method), 23

C
cache_bust (exhibition.node.Node attribute), 23
Config (class in exhibition.config), 22
content_filter() (in module exhibi-

tion.filters.external), 20
content_filter() (in module exhibi-

tion.filters.jinja2), 21
copy() (exhibition.config.Config method), 22

D
data (exhibition.node.Node attribute), 23

E
exhibit command line option

-v, -verbose, 14
exhibition (module), 24
exhibition.command (module), 22
exhibition.config (module), 22
exhibition.filters (module), 22
exhibition.filters.external (module), 20
exhibition.filters.jinja2 (module), 21
exhibition.node (module), 22
exhibition.utils (module), 24
ExhibitionBaseHTTPRequestHandler (class in

exhibition.utils), 24

F
from_path() (exhibition.config.Config class method),

22
from_path() (exhibition.node.Node class method), 23
full_path (exhibition.node.Node attribute), 23
full_url (exhibition.node.Node attribute), 23

G
gen() (in module exhibition.utils), 24
get() (exhibition.config.Config method), 22
get_content() (exhibition.node.Node method), 23
get_from_path() (exhibition.node.Node method),

23
get_name() (exhibition.config.Config method), 22

I
identifier (exhibition.filters.jinja2.Mark attribute),

21
identifier (exhibition.filters.jinja2.RaiseError at-

tribute), 21
index_file (exhibition.node.Node attribute), 23
items() (exhibition.config.Config method), 22

K
keys() (exhibition.config.Config method), 22

L
load() (exhibition.config.Config method), 22

M
Mark (class in exhibition.filters.jinja2), 21
markdown() (in module exhibition.filters.jinja2), 21
marks (exhibition.node.Node attribute), 23
meta (exhibition.node.Node attribute), 23
metareject() (in module exhibition.filters.jinja2), 21
metaselect() (in module exhibition.filters.jinja2), 21
metasort() (in module exhibition.filters.jinja2), 21

N
Node (class in exhibition.node), 22

P
parse() (exhibition.filters.jinja2.Mark method), 21
parse() (exhibition.filters.jinja2.RaiseError method),

21
process_meta() (exhibition.node.Node method), 23

31

Exhibition Documentation, Release 0.1.0

R
RaiseError (class in exhibition.filters.jinja2), 21
render() (exhibition.node.Node method), 23

S
serve() (in module exhibition.utils), 24
siblings (exhibition.node.Node attribute), 24
strip_exts (exhibition.node.Node attribute), 24

T
tags (exhibition.filters.jinja2.Mark attribute), 21
tags (exhibition.filters.jinja2.RaiseError attribute), 21
translate_path() (exhibi-

tion.utils.ExhibitionBaseHTTPRequestHandler
method), 24

U
update() (exhibition.config.Config method), 22

V
values() (exhibition.config.Config method), 22

W
walk() (exhibition.node.Node method), 24

32 Index

	What?
	Where?
	License?
	Why though?
	What’s the status of this project?
	Contributions

	Indices and tables
	Python Module Index

